题目内容

【题目】已知梯形ABCD中,ADBCABC =BAD =AB=BC=2AD=4EF分别是ABCD上的点,EFBCAE = GBC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF

1)若以FBCD为顶点的三棱锥的体积记为,求的最大值;

2)当 取得最大值时,求二面角D-BF-C的余弦值.

【答案】(1) 有最大值为;(2) 二面角的余弦值为:-.

【解析】试题分析:(1)由平面 ,可得,进而由面面垂直的性质定理得到平面,进而建立空间坐标系,可得的解析式,根据二次函数的性质,易求出有最大值;(2)根据(1)的结论平面的一个法向量为,利用向量垂直数量积为零列方程组求出平面的法向量,代入向量夹角公式即可得到二面角的余弦值.

试题解析:(1)∵平面平面,AE⊥EF,

∴AE⊥面平面,AE⊥EF,AE⊥BE,又BE⊥EF,故可如图建立空间坐标系E-xyz.则A(0,0,2),B(2,0,0),G(2,2,0),D(0,2,2),

E(0,0,0)∵AD∥面BFC,

所以VA-BFC

,即有最大值为

(2)设平面DBF的法向量为,∵AE=2, B(2,0,0),

D(0,2,2),F(0,3,0),∴ (-2,2,2),

,即

x=3,则y=2,z=1,∴

面BCF的一个法向量为

则cos<>=.

由于所求二面角D-BF-C的平面角为钝角,所以此二面角的余弦值为:-

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网