题目内容
(本题满分12分)给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”。若椭圆
的一个焦点为
,其短轴上的一个端点到
的距离为
.
(Ⅰ)求椭圆
的方程和其“准圆”方程.
(Ⅱ)点
是椭圆
的“准圆”上的一个动点,过动点
作直线
使得
与椭圆
都只有一个交点,且
分别交其“准圆”于点
,求证:
为定值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335245313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023352601089.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335276292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335291543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335245313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335245313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335338599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335354302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335369337.png)
(Ⅰ)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335245313.png)
(Ⅱ)点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335401289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335245313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335401289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335245313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335681550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335697544.png)
(Ⅰ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335728579.png)
(Ⅱ)根据
斜率情况进行分类讨论,分别证明知直线
垂直,从而
=4
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335728579.png)
(Ⅱ)根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335697544.png)
解:(Ⅰ)
,
椭圆方程为
……2分
准圆方程为
。 …………3分
(Ⅱ)①当
中有一条无斜率时,不妨设
无斜率,因为
与椭圆只有一个公共点,则其方程为
,当
方程为
时,此时
与准圆交于点
,
此时经过点
(或
)且与椭圆只有一个公共点的直线是
(或
),
即
为
(或
),显然直线
垂直;
同理可证
方程为
时,直线
垂直. …………………………6分
②当
都有斜率时,设点
,其中
.
设经过点
与椭圆只有一个公共点的直线为
,
则
消去
,得
.
由
化简整理得:
.…………………………8分
因为
,所以有
.
设
的斜率分别为
,因为
与椭圆只有一个公共点,
所以
满足上述方程
,
所以
,即
垂直. …………………………10分
综合①②知:因为
经过点
,又分别交其准圆于点
,且
垂直,所以线段
为准圆
的直径,所以
=4. ………………………12分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335822794.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335837195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335837660.png)
准圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335728579.png)
(Ⅱ)①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335884313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335884313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335915459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335884313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335947439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335884313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335978778.png)
此时经过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335993571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336009592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336025359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336025371.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336040340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336025359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336025371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
同理可证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335884313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336134448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336196640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336212645.png)
设经过点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336196640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336243690.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023362591206.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336274310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023363051384.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336321400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023363371082.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336212645.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023363681147.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336399407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336399407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023363681147.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336477481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
综合①②知:因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336196640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335681550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335510421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002336586513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335728579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002335697544.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目