题目内容
(本小题满分12分)椭圆:的左、右焦点分别为,焦距为2,,过作垂直于椭圆长轴的弦长为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线l交椭圆于两点.并判断是否存在直线l使得的夹角为钝角,若存在,求出l的斜率k的取值范围。
(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线l交椭圆于两点.并判断是否存在直线l使得的夹角为钝角,若存在,求出l的斜率k的取值范围。
(Ⅰ);(Ⅱ) 。
试题分析:(Ⅰ)依题意 2分
解得,∴椭圆的方程为: 4分
(注:也可以由,椭圆定义求得)
(Ⅱ)(i)当过直线的斜率不存在时,点,;则;5分
(ii)当过直线的斜率存在时,设斜率为,则直线的方程为,
设, 由 得:
7分
10分
当的夹角为钝角时,<0, 11分
情形(i)不满足<0, 12分
点评:求圆锥曲线的标准方程是解析几何的基本问题,在研究直线与椭圆的位置关系中,常常用到韦达定理,以实现整体代换,向量知识常在条件中出现,以达到综合考查的目的。
练习册系列答案
相关题目