题目内容
5.已知偶函数f(x)在[0,+∞)上单调递减,且f(-2)=0,若f(x-2)>0,则x的取值范围是(0,4).分析 根据函数奇偶性和单调性之间的关系,将不等式进行转化为f(|x-2|)>0,进行求解即可.
解答 解:∵偶函数f(x)在[0,+∞)上单调递减,且f(-2)=0,
∴f(2)=f(-2)=0,
则不等式f(x-2)>0,等价为f(|x-2|)>f(2),
则|x-2|<2,
即-2<x-2<2,
即0<x<4,
即x的取值范围是(0,4),
故答案为:(0,4)
点评 本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系,将不等式进行转化是解决本题的关键.
练习册系列答案
相关题目
15.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(Ⅲ)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
常喝 | 不常喝 | 合计 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
合计 | 30 |
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(Ⅲ)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
13.给出以下四个判断:
①线段AB在平面α内,则直线AB不一定在平面α内;
②两平面有一个公共点,则它们一定有无数个公共点;
③三条平行直线共面;
④有三个公共点的两平面重合.
其中不正确的判断的个数为3..
①线段AB在平面α内,则直线AB不一定在平面α内;
②两平面有一个公共点,则它们一定有无数个公共点;
③三条平行直线共面;
④有三个公共点的两平面重合.
其中不正确的判断的个数为3..
20.已知m,n是两条不重合的直线,α,β,γ是三个两两不重合的平面.给出下列四个命题:
①若m⊥α,m⊥β,则α∥β;
②若m?α,n?β,则α∥β;
③若α⊥γ,β⊥γ,则α∥β;
④若m、n是异面直线,m?α,m∥β,n?β,n∥α,则α∥β.
其中真命题是( )
①若m⊥α,m⊥β,则α∥β;
②若m?α,n?β,则α∥β;
③若α⊥γ,β⊥γ,则α∥β;
④若m、n是异面直线,m?α,m∥β,n?β,n∥α,则α∥β.
其中真命题是( )
A. | ①和③ | B. | ①和② | C. | ①和④ | D. | ③和④ |
17.设全集U=R,A={x|x2<4},B={x|logx7>log37},则A∩(∁UB)是( )
A. | {x|-2<x<1} | B. | {x|x<-2或x≥3} | C. | {x|-2<x≤1} | D. | {x|-2<x<3且x≠1} |
14.已知tan(α+β)=$\frac{3}{5}$,tan(β-$\frac{π}{4}$)=$\frac{1}{4}$,那么tan(α+$\frac{π}{4}$)为( )
A. | $\frac{13}{18}$ | B. | $\frac{13}{23}$ | C. | $\frac{3}{18}$ | D. | $\frac{7}{23}$ |