题目内容

【题目】已知△ABC中,角A、B、C的对边分别为a、b、c,且 =1.
(1)求角A;
(2)若a=4 ,求b+c的取值范围.

【答案】
(1)解:∵ =1.

∴由正弦定理可得: =1,整理可得:b2+c2﹣a2=bc,

∴由余弦定理可得:cosA= = =

∵A∈(0,π),

∴A=


(2)解:∵A= ,a=4

∴由余弦定理a2=b2+c2﹣2bc,可得:48=b2+c2﹣bc≥2bc﹣bc=bc,解得:bc≤48,当且仅当b=c=4 时等号成立,

又∵48=b2+c2﹣bc=(b+c)2﹣3bc,可得:(b+c)2=48+3bc≤192,

∴可得:b+c≤8

又∵b+c>a=4

∴b+c∈(4 ,8 ]


【解析】(1)由正弦定理化简已知,整理可得:b2+c2﹣a2=bc,由余弦定理可得cosA= ,结合范围A∈(0,π),即可得解A的值.(2)由余弦定理,基本不等式可得:bc≤48,可得:b+c≤8 ,结合三角形两边之和大于第三边,即可得解b+c的取值范围.
【考点精析】关于本题考查的正弦定理的定义和余弦定理的定义,需要了解正弦定理:;余弦定理:;;才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网