题目内容
【题目】已知函数f(x)= (a>0)的导函数y=f′(x)的两个零点为0和3.
(1)求函数f(x)的单调递增区间;
(2)若函数f(x)的极大值为 ,求函数f(x)在区间[0,5]上的最小值.
【答案】
(1)解:f′(x)=
令g(x)=﹣ax2+(2a﹣b)x+b﹣c
函数y=f′(x)的零点即g(x)=﹣ax2+(2a﹣b)x+b﹣c的零点
即:﹣ax2+(2a﹣b)x+b﹣c=0的两根为0,3
则 解得:b=c=﹣a,
令f′(x)>0得0<x<3
所以函数的f(x)的单调递增区间为(0,3)
(2)解:由(1)得:
函数在区间(0,3)单调递增,在(3,+∞)单调递减,
∴ ,
∴a=2,
∴ ; ,
∴函数f(x)在区间[0,4]上的最小值为﹣2
【解析】(1)先求导,在根据函数的零点得到:﹣ax2+(2a﹣b)x+b﹣c=0的两根为0,3,根据韦达定理即可求出a,b,c的关系,根据导数和函数单调性的关系即可求出单调增区间,(2)根据函数的单调性即可求出函数在闭区间上的最小值.
【考点精析】根据题目的已知条件,利用函数单调性的判断方法和函数的最值及其几何意义的相关知识可以得到问题的答案,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.
练习册系列答案
相关题目