题目内容
【题目】已知等比数列{}的前n项和为,且满足2=+m(m∈R).
(Ⅰ)求数列{}的通项公式;
(Ⅱ)若数列{}满足,求数列{}的前n项和.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)法一:由前n项和与数列通项公式的关系可得数列的通项公式为;
法二:由题意可得,则,据此可得数列的通项公式为.
(Ⅱ)由(Ⅰ)可得,裂项求和可得.
(Ⅰ)法一:
由得,
当时,,即,
又,当时符合上式,所以通项公式为.
法二:
由得
从而有,
所以等比数列公比,首项,因此通项公式为.
(Ⅱ)由(Ⅰ)可得,
,
.
【点睛】
本题主要考查数列前n项和与通项公式的关系,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.
【题型】解答题
【结束】
18
【题目】四棱锥S-ABCD的底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=2BC=2CD=2,△SAD为正三角形.
(Ⅰ)点M为棱AB上一点,若BC∥平面SDM,AM=λAB,求实数λ的值;
(Ⅱ)若BC⊥SD,求二面角A-SB-C的余弦值.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)由线面平行的性质定理可得,据此可知四边形BCDM为平行四边形,据此可得.
(Ⅱ)由几何关系,在平面内过点作直线于点,以点E为坐标原点,EA方向为X轴,EC方向为Y轴,ES方向为Z轴建立空间坐标系,据此可得平面的一个法向量,平面的一个法向量,据此计算可得二面角余弦值为.
(Ⅰ)因为平面SDM, 平面ABCD,平面SDM 平面ABCD=DM,所以,
因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.
因为 .
(Ⅱ)因为 , ,所以平面,又因为平面,
所以平面平面,平面平面,
在平面内过点作直线于点,则平面,
在和中,因为,所以,
又由题知,所以所以,
以下建系求解.以点E为坐标原点,EA方向为X轴,EC方向为Y轴,ES方向为Z轴建立如图所示空间坐标系,
则,,,,,
,,,,
设平面的法向量,则,所,
令得为平面的一个法向量,
同理得为平面的一个法向量,
,因为二面角为钝角.
所以二面角余弦值为.