题目内容

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知
(Ⅰ)求b和c;
(Ⅱ)求sin(A﹣B)的值.

【答案】解:(Ⅰ)∵在△ABC中,cos2A=1﹣2sin2A=﹣ ,解得:sinA= ,∵ ,可得:bccosA=﹣1<0,可得:cosA=﹣ =﹣
解得:bc=3,①
又∵ ,由余弦定理a2=b2+c2﹣2bccosA,可得8=b2+c2+2,
∴解得:b2+c2=6,可得:(b+c)2﹣2bc=(b+c)2﹣6=6,解得:b+c=2 ,②
∴联立①②解得:b=c=
(Ⅱ)∵ ,b=c= ,sinA=
∴sinB= = ,cosB= =
∴sin(A﹣B)=sinAcosB﹣cosAsinB= ﹣(﹣ )× =
【解析】(Ⅰ)利用二倍角的余弦函数公式可求sinA,利用平面向量数量积的运算bccosA=﹣1<0,根据同角三角函数基本关系式可得cosA,bc=3,又由余弦定理解得:b+c=2 ,联立即可解得b,c的值.(Ⅱ)由(Ⅰ)利用正弦定理可求sinB,利用同角三角函数基本关系式可求cosB,利用两角差的正弦函数公式即可计算得解.
【考点精析】通过灵活运用正弦定理的定义和余弦定理的定义,掌握正弦定理:;余弦定理:;;即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网