题目内容
(本小题满分12分)如图,
平面
,四边形
是正方形,
,点
、
、
分别为线段
、
和
的中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157113375685.png)
(Ⅰ)求异面直线
与
所成角的余弦值;
(Ⅱ)在线段
上是否存在一点
,使得点
到平面
的距离恰为
?若存在,求出线段
的长;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711119394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711150534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711150534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711181580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711197319.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711228303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711244316.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711275371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711290368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711306405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157113375685.png)
(Ⅰ)求异面直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711368418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711384380.png)
(Ⅱ)在线段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711306405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711415333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711446300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711462491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711478346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711493417.png)
(1)
.
(2)在线段
上存在一点
满足条件,且长度为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711509462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711540169.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711306405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711415333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711602382.png)
由题意得射线 AB、AD、AP两两垂直,可以点
为坐标原点,建立空间直角坐标系,借助于向量求解。(1)要注意异面直线
与
所成角的余弦值非负;(2)设存在点![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711415333.png)
,
,由点
到平面
的距离恰为
,可得
根据两点间的距离公式得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711821654.png)
(1)以点
为坐标原点,射线AB、AD、AP分别为
的正半轴建立空间直角坐标系(如右图所示),则点
、
、
、
,则
,
.设异面直线
与
所成角为![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712024297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157120396414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157120701082.png)
,
所以异面直线
与
所成角的余弦值为
.![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711540169.png)
(2)假设在线段
上存在一点
满足条件,设点![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711415333.png)
,平面
的法向量为
,则有
得到
,取
,所以
,则
,又
,解得
,所以点
即
,则
.所以在线段
上存在一点
满足条件,且长度为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711446300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711368418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711384380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711415333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711696597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711712452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711446300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711462491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711478346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711790521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711821654.png)
(1)以点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711446300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711852580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711883556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711899605.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711914574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711946586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711961716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711977692.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711368418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711384380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712024297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157120396414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232157120701082.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712102884.png)
所以异面直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711368418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711384380.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711509462.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711540169.png)
(2)假设在线段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711306405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711415333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711415333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711696597.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711462491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712304653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712320975.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712351611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712367323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712382661.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712429879.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711712452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711790521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712507745.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215712523835.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711821654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711306405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711415333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215711602382.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目