题目内容

正方体ABCDA1B1C1D1中,EBC1的中点,则异面直线A1ECD1所成角等于
A.90°B.60°C.45°D.30°
D
解:连接A1B,BE,如图所示:
由正方体的几何特征可得A1B∥CD1
故∠BA1E即为异面直线A1E与CD1所成角
设正方体ABCD-A1B1C1D1的棱长为2,
则在△A1BE中,A1B=2,BE= ,A1E=
故cos∠BA1E=(A1B2+A12-BE2) /(2A1B•A1E) =  
故∠BA1E=30°
故选D
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网