题目内容
10.求tan570°的值为( )A. | -$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
分析 运用诱导公式及特殊角的三角函数值即可求值.
解答 解:tan570°=tan(360°+180°+30°)=tan30°=$\frac{\sqrt{3}}{3}$.
故选:B.
点评 本题主要考查了诱导公式,特殊角的三角函数值的应用,属于基础题.
练习册系列答案
相关题目
20.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,7),则向量$\overrightarrow{b}$在向量$\overrightarrow{a}$的方向上的投影为( )
A. | $\frac{\sqrt{13}}{13}$ | B. | $\sqrt{13}$ | C. | $\frac{\sqrt{65}}{5}$ | D. | $\sqrt{65}$ |
15.下列比较大小正确的是( )
A. | sin(-$\frac{π}{18}$)$<sin(-\frac{π}{10})$ | B. | sin(-$\frac{π}{18}$)$>sin\frac{π}{10}$ | C. | sin(-$\frac{π}{18}$)$>sin(-\frac{π}{10})$ | D. | sin$\frac{π}{18}$$>sin\frac{π}{10}$ |
2.若z1=(1-i)2,z2=1+i,则$\frac{{z}_{1}}{{z}_{2}}$等于( )
A. | 1+i | B. | -1+i | C. | 1-i | D. | -1-i |
14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线与椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1在第一、四象限交于A,B两点,若椭圆的左焦点为F,当△AFB的周长最大时,求双曲线的离心率( )
A. | $\frac{3\sqrt{3}}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{\sqrt{13}}{2}$ | D. | $\frac{9}{4}$ |