题目内容
【题目】设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;
记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,…).
记数表中位于第i行第j列的元素为,其中(,,).如:,.
(1)设,,请计算,,;
(2)设,,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;
(3)设,,对于整数t,t不属于数表M,求t的最大值.
【答案】(1)(2)详见解析(3)29
【解析】
(1)将,代入,可求出,,可代入求,,可求结果.
(2)可求,,通过反证法证明,
(3)可推出,,的最大值,就是集合中元素的最大值,求出.
(1)由题意知等差数列的通项公式为:;
等差数列的通项公式为:,
得,
则,,
得,
故.
(2)证明:已知.,由题意知等差数列的通项公式为:;
等差数列的通项公式为:,
得,,.
得,,,.
所以若,则存在,,使,
若,则存在,,,使,
因此,对于正整数,考虑集合,,,
即,,,,,,.
下面证明:集合中至少有一元素是7的倍数.
反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,
又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,
不妨设为,,其中,,.则这两个元素的差为7的倍数,即,
所以,与矛盾,所以假设不成立,即原命题成立.
即集合中至少有一元素是7的倍数,不妨设该元素为,,,
则存在,使,,,即,,,
由已证可知,若,则存在,,使,而,所以为负整数,
设,则,且,,,,
所以,当,时,对于整数,若,则成立.
(3)下面用反证法证明:若对于整数,,则,假设命题不成立,即,且.
则对于整数,存在,,,,,使成立,
整理,得,
又因为,,
所以且是7的倍数,
因为,,所以,所以矛盾,即假设不成立.
所以对于整数,若,则,
又由第二问,对于整数,则,
所以的最大值,就是集合中元素的最大值,
又因为,,,,
所以.