题目内容
已知数列
的首项为
,其前
项和为
,且对任意正整数
有:
、
、
成等差数列.
(1)求证:数列
成等比数列;
(2)求数列
的通项公式.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012159931480.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012159947366.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012159962297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012159978388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012159962297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012159962297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200025348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200040388.png)
(1)求证:数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200056713.png)
(2)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012159931480.png)
(1)
,当
时,
,所以
,
即
,又
,所以
成以4为首项、2为公比的等比数列(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200181520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200087657.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200103437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200118564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200134794.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200150938.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200165558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200056713.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200181520.png)
试题分析:⑴因对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200196522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200212571.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200087657.png)
又当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200103437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200118564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200134794.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200150938.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200165558.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200056713.png)
⑵由⑴得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200337871.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200337669.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200103437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122003991398.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200415371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012200181520.png)
点评:证明数列是等比数列一般采用定义,即相邻两项的比值是常数,本题求通项用到了公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240122004621291.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容