题目内容

【题目】性格色彩学创始人乐嘉是江苏电视台当红节目“非诚勿扰”的特约嘉宾,他的点评视角独特,语言犀利,给观众留下了深刻的印象,某报社为了了解观众对乐嘉的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)

总计

喜爱

40

60

100

不喜爱

20

20

40

总计

60

80

140

(Ⅰ)从这60名男观众中按对乐嘉是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025%的前提下认为观众性别与喜爱乐嘉有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱乐嘉的概率.
附:

p(k2≥k0

0.10

0.05

0.025

0.010

0.005

k0

2.705

3.841

5.024

6.635

7.879

k2=

【答案】解:(Ⅰ)抽样比为 =

则样本中喜爱的观从有40× =4名;不喜爱的观众有6﹣4=2名.

(Ⅱ)假设:观众性别与喜爱乐嘉无关,由已知数据可求得,

k2= = ≈1.167<5.024;

∴不能在犯错误的概率不超过0.025的前提下认为观众性别与喜爱乐嘉有关.

(Ⅲ)记喜爱乐嘉的4名男性观众为a,b,c,d,不喜爱乐嘉的2名男性观众为1,2;则基本事件分别为:

(a,b),(a,c),(a,d),(a,1),(a,2),

(b,c),(b,d),(b,1),(b,2),

(c,d),(c,1),(c,2),

(d,1),(d,2),

(1,2).

其中选到的两名观众都喜爱乐嘉的事件有6个,

故其概率为P(A)= =0.4


【解析】(Ⅰ)由抽样比例求样本中的数据;(Ⅱ)代入公式求出k2的值,查表得结论;(Ⅲ)列出所有的基本事件,用古典概型概率公式求值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网