题目内容
【题目】如图,在三棱柱 中, 底面 ,且 为等边三角形, , 为 的中点.
(1)求证:直线 平面 ;
(2)求三棱锥 的体积.
【答案】
(1)证明:如图所示,
连接B1C交BC1于O,连接OD,因为四边形BCC1B1是平行四边形,所以点O为B1C的中点,
又因为D为AC的中点,所以OD为△AB1C的中位线,所以OD∥B1A,
又OD平面C1BD,AB1平面C1BD,所以AB1∥平面C1BD
(2)解 : 因为△ABC是等边三角形,D为AC的中点,所以BD⊥AC,
又因为AA1⊥底面ABC,所以AA1⊥BD,
根据线面垂直的判定定理得BD⊥平面A1ACC1 , △ABC中,BD⊥AC,BD=BCsin60°=3 ,
∴S△BCD= ×3×3 = ,∴ = = 6=9
【解析】(1)根据题意作出辅助线结合平行四边形以及中位线的性质可得OD∥B1A,由线面平行的判定定理即可得证。(2) 根据已知条件得出线线垂直进而得出线面垂直即为点到模的距离也就是高的值,把已知数值代入到三棱锥的条件公式求出结果即可。
【题目】随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩”宝宝. (I)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询.
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(Ⅱ)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
附:
P(k2>k0) | 0.4 | 0.25 | 0.15 | 0.10 |
k0 | 0.708 | 1.323 | 2.072 | 2.706 |
【题目】性格色彩学创始人乐嘉是江苏电视台当红节目“非诚勿扰”的特约嘉宾,他的点评视角独特,语言犀利,给观众留下了深刻的印象,某报社为了了解观众对乐嘉的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)
男 | 女 | 总计 | |
喜爱 | 40 | 60 | 100 |
不喜爱 | 20 | 20 | 40 |
总计 | 60 | 80 | 140 |
(Ⅰ)从这60名男观众中按对乐嘉是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025%的前提下认为观众性别与喜爱乐嘉有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱乐嘉的概率.
附:
p(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
k2= .