题目内容
【题目】若指数函数f(x)的图象过点(﹣2,4),则f(3)=;不等式f(x)+f(﹣x)< 的解集为 .
【答案】["","(﹣1,1)"]
【解析】解:设指数函数解析式为y=ax,因为指数函数f(x)的图象过点(﹣2,4),所以4=a﹣2,解得a= ,所以指数函数解析式为y= ,所以f(3)= ;
不等式f(x)+f(﹣x)< 为 ,设2x=t,不等式化为 ,所以2t2﹣5t+2<0解得 <t<2,即 <2x<2,所以﹣1<x<1,所以不等式的解集为(﹣1,1).
所以答案是: ;(﹣1,1).
【考点精析】解答此题的关键在于理解指数函数的图像与性质的相关知识,掌握a0=1, 即x=0时,y=1,图象都经过(0,1)点;ax=a,即x=1时,y等于底数a;在0<a<1时:x<0时,ax>1,x>0时,0<ax<1;在a>1时:x<0时,0<ax<1,x>0时,ax>1.
【题目】性格色彩学创始人乐嘉是江苏电视台当红节目“非诚勿扰”的特约嘉宾,他的点评视角独特,语言犀利,给观众留下了深刻的印象,某报社为了了解观众对乐嘉的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)
男 | 女 | 总计 | |
喜爱 | 40 | 60 | 100 |
不喜爱 | 20 | 20 | 40 |
总计 | 60 | 80 | 140 |
(Ⅰ)从这60名男观众中按对乐嘉是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025%的前提下认为观众性别与喜爱乐嘉有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱乐嘉的概率.
附:
p(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
k2= .