题目内容
【题目】设集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},已知BA.
(1)求实数m的取值范围;
(2)当x∈N时,求集合A的子集的个数.
【答案】
(1)①当m-1>2m+1,即m<-2时,B=,符合题意;
②当m-1≤2m+1,即m≥-2时,B≠.由BA,借助数轴,如图所示,
得 解得0≤m≤ .所以0≤m≤ .
综合①②可知,实数m的取值范围为 .
(2)∵当x∈N时,A={0,1,2,3,4,5,6},∴集合A的子集的个数为27=128.
【解析】(1)对于不等式表示的集合,通过数轴表示后,由包含关系得到参数的取值范围.
(2)当x∈N时,求出集合A的具体元素,有7个,再结合子集个数公式求子集的个数.
【考点精析】本题主要考查了子集与真子集的相关知识点,需要掌握任何一个集合是它本身的子集;n个元素的子集有2n个,n个元素的真子集有2n -1个,n个元素的非空真子集有2n-2个才能正确解答此题.
【题目】随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩”宝宝. (I)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询.
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(Ⅱ)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
附:
P(k2>k0) | 0.4 | 0.25 | 0.15 | 0.10 |
k0 | 0.708 | 1.323 | 2.072 | 2.706 |
【题目】性格色彩学创始人乐嘉是江苏电视台当红节目“非诚勿扰”的特约嘉宾,他的点评视角独特,语言犀利,给观众留下了深刻的印象,某报社为了了解观众对乐嘉的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)
男 | 女 | 总计 | |
喜爱 | 40 | 60 | 100 |
不喜爱 | 20 | 20 | 40 |
总计 | 60 | 80 | 140 |
(Ⅰ)从这60名男观众中按对乐嘉是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025%的前提下认为观众性别与喜爱乐嘉有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱乐嘉的概率.
附:
p(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.705 | 3.841 | 5.024 | 6.635 | 7.879 |
k2= .