题目内容
(本小题满分14分)
无穷数列
的前n项和
,并且
≠
.
(1)求p的值;
(2)求
的通项公式;
(3)作函数
,如果
,证明:
.
无穷数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004024267.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004040613.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004055206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004087208.gif)
(1)求p的值;
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004024267.gif)
(3)作函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004258703.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004274401.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004305395.gif)
解:(1)∵
∴
,且p=1,或
.
若是
,且p=1,则由
.
∴
,矛盾.故不可能是:
,且p=1.由
,得
.
又
,∴
.
(2)∵
,
,
∴
.
.
当k≥2时,
. ∴ n≥3时有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005678723.gif)
.
∴ 对一切
有:
.
(3)∵
,
∴
.
.
故
.
∴
. 故
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004321455.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004367270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004383259.gif)
若是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004367270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004430538.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004508259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004367270.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004383259.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004711268.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171004430538.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005147287.gif)
(2)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005241634.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005257493.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005319753.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005335534.gif)
当k≥2时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005506525.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005678723.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005693869.gif)
∴ 对一切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005709383.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005927486.gif)
(3)∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005943774.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005974251.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171005990559.gif)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171006005633.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171006037709.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171006052400.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目