题目内容
((本小题满分12分)
已知为等比数列,;为等差数列的前n项和,.
(1) 求和的通项公式;
(2) 设,求.
已知为等比数列,;为等差数列的前n项和,.
(1) 求和的通项公式;
(2) 设,求.
解:(1) 设{an}的公比为q,由a5=a1q4得q=4
所以an=4n-1.…………………………………………………………………………4分
设{ bn }的公差为d,由5S5=2 S8得5(5 b1+10d)=2(8 b1+28d),
,
所以bn=b1+(n-1)d=3n-1.…………………………………………………8分
(2) Tn=1·2+4·5+42·8+…+4n-1(3n-1),①
4Tn=4·2+42·5+43·8+…+4n(3n-1),②
②-①得:3Tn=-2-3(4+42+…+4n)+4n(3n-1)……………………………10分
= -2+4(1-4n-1)+4n(3n-1)
=2+(3n-2)·4n………………………………………………………12分
∴Tn=(n-)4n+
所以an=4n-1.…………………………………………………………………………4分
设{ bn }的公差为d,由5S5=2 S8得5(5 b1+10d)=2(8 b1+28d),
,
所以bn=b1+(n-1)d=3n-1.…………………………………………………8分
(2) Tn=1·2+4·5+42·8+…+4n-1(3n-1),①
4Tn=4·2+42·5+43·8+…+4n(3n-1),②
②-①得:3Tn=-2-3(4+42+…+4n)+4n(3n-1)……………………………10分
= -2+4(1-4n-1)+4n(3n-1)
=2+(3n-2)·4n………………………………………………………12分
∴Tn=(n-)4n+
略
练习册系列答案
相关题目