题目内容
12.复数z满足(1+i)z=3+i,则复数z在复平面内所对应的点的坐标是( )A. | (1,-2) | B. | (-2,1) | C. | (-1,2) | D. | (2,-1) |
分析 把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.
解答 解:由(1+i)z=3+i,得$z=\frac{3+i}{1+i}=\frac{(3+i)(1-i)}{(1+i)(1-i)}=\frac{4-2i}{2}=2-i$,
∴复数z在复平面内所对应的点的坐标是(2,-1).
故选:D.
点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
17.定义:如果函数f(x)在[a,b]上存在x1,x2 (a<x1<x2<b),满足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f′(b)-f′(a)}{b-a}$,则称数x1,x2 为[a,b]上的“对望数”函数f(x)为[a,b]上的“对望函数”,已知函数f(x)=$\frac{1}{3}{x}^{3}-{x}^{2}+m$是[0,m]上的“对望函数”,则实数m的取值范围是( )
A. | (1,$\frac{3}{2}$) | B. | (1,$\frac{3}{2}$)∪($\frac{3}{2}$,3) | C. | (2,3) | D. | ($\frac{3}{2}$,3) |
4.中心在原点,焦点在x轴上的双曲线C的离心率为$\sqrt{2}$,直线l与双曲线C交于A,B两点,线段AB中点M在第一象限,并且在抛物线y2=2px(p>0)上,且M到抛物线焦点的距离为p,则直线l的斜率为( )
A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |