题目内容

【题目】已知函数f(x)=
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求证:f(x)>0.

【答案】
(1)解:由2x﹣1≠0得x≠0,∴函数f(x)的定义域为(﹣∞,0)∪(0,+∞)
(2)解:∵f(x)= =

∴f(﹣x)= =

∴函数f(x)为定义域上的偶函数.


(3)解:证明:当x>0时,2x>1

∴2x﹣1>0,

>0

∵f(x)为定义域上的偶函数

∴当x<0时,f(x)>0

∴f(x)>0成立


【解析】(1)由分母不能为零得2x﹣1≠0求解即可.要注意定义域要写成集合或区间的形式.(2)在(1)的基础上,只要再判断f(x)与f(﹣x)的关系即可,但要注意作适当的变形.(3)在(2)的基础上要证明对称区间上成立可即可.不妨证明:当x>0时,则有2x>1进而有2x﹣1>0, 然后得到 >0.再由奇偶性得到对称区间上的结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网