题目内容
【题目】关于二项式(x-1)2 013有下列命题:
(1)该二项展开式中非常数项的系数和是1;
(2)该二项展开式中第六项为C2 0136x2 007;
(3)该二项展开式中系数最大的项是第1 007项;
(4)当x=2 014时,(x-1)2 013除以2 014的余数是2 013.
其中正确命题有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】此二项展开式各项系数的和为0,其常数项为1,故(1)正确;
其第六项,故(2)错;
该二项展开式共有2014项,奇数项系数为正、偶数项系数为负,
由二项式系数的性质知第1007项与1008项系数的绝对值最大,故(3)正确;
当x=2014时,被2014除的余数为20141=2013.故(4)正确。
其中正确命题有3个。
本题选择C选项.
【题目】4月23日是世界读书日,惠州市某中学在此期间开展了一系列的读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
(Ⅰ)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
(Ⅱ)将频率视为概率,现在从该校大量学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“读书迷”的人数为,若每次抽取的结果是相互独立的,求的分布列、数学期望和方差.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】(本小题满分12分)某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表1所示
表1
参加社团活动 | 不参加社团活动 | 合计 | |
学习积极性高 | 17 | 8 | 25 |
学习积极性一般 | 5 | 20 | 25 |
合计 | 22 | 28 | 50 |
(1)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?
(2)运用独立检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:
累积净化量(克) | 12以上 | |||
等级 |
为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照、、、、均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:
(1)求的值及频率分布直方图中的值;
(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?
(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.
【题目】某品牌汽车的店,对最近100份分期付款购车情况进行统计,统计情况如下表所示.已知分9期付款的频率为0.4;该店经销一辆该品牌汽车,若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
频数 | 20 | 20 |
(1)若以上表计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3为顾客,求事件:“至多有1位采用分6期付款“的概率;
(2)按分层抽样方式从这100为顾客中抽取5人,再从抽取的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量,求的分布列和数学期望.