题目内容
已知函数f(x)=sin(2x-),若存在a∈(0,π),使得f(x+a)=f(x-a)恒成立,则a的值是( )
A. | B. | C. | D. |
D
因为函数满足f(x+a)=f(x-a),所以函数是周期函数,且周期为2a,又a∈(0,π),所以2a=,所以a=.
【方法技巧】周期函数的理解
(1)周期函数定义中的等式:f(x+T)=f(x)是定义域内的恒等式,即对定义域内的每个x值都成立,若只是存在个别x满足等式的常数T不是周期.
(2)每个周期函数的定义域是一个无限集,其周期有无穷多个,对于周期函数y=f(x),T是周期,则kT(k∈Z,k≠0)也是周期,但并非所有周期函数都有最小正周期.
【方法技巧】周期函数的理解
(1)周期函数定义中的等式:f(x+T)=f(x)是定义域内的恒等式,即对定义域内的每个x值都成立,若只是存在个别x满足等式的常数T不是周期.
(2)每个周期函数的定义域是一个无限集,其周期有无穷多个,对于周期函数y=f(x),T是周期,则kT(k∈Z,k≠0)也是周期,但并非所有周期函数都有最小正周期.
练习册系列答案
相关题目