题目内容
已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG是边长为2的等边三角形,则f(1)的值为( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240359141101355.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240359141101355.jpg)
A.-![]() | B.-![]() | C.![]() | D.-![]() |
D
【思路点拨】由△EFG的高可得振幅A.由FG的长可得周期,从而得ω.由f(x)为奇函数可求φ,从而可求f(1).
解:由△EFG是边长为2的等边三角形,得高为
,即A=
.
又FG为半个周期长故T=4,
∴ω=
=
.
又∵f(x)为奇函数,
∴φ=kπ+
,k∈Z,
又∵0<φ<π,∴φ=
.
∴f(x)=
cos(
x+
),
∴f(1)=
cosπ=-
.
解:由△EFG是边长为2的等边三角形,得高为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914157363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914157363.png)
又FG为半个周期长故T=4,
∴ω=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914204350.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914219313.png)
又∵f(x)为奇函数,
∴φ=kπ+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914219313.png)
又∵0<φ<π,∴φ=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914219313.png)
∴f(x)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914157363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914219313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914219313.png)
∴f(1)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914157363.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035914157363.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目