题目内容
【题目】已知函数 .
(1)求函数的极小值;
(2)求证:当时,.
【答案】(1)见解析(2)见解析
【解析】
(1)由题意可得分类讨论函数的极小值即可.
(2)令,原问题等价于,即证.据此分类讨论,和三种情况即可证得题中的结论.
(1)
当时,即时,,函数在上单调递增,无极小值;
当时,即时,,函数在上单调递减;
,函数在上单调递增;
,
综上所述,当时,无极小值;当时,
(2)令
当时,要证:,即证,即证,
要证,即证.
①当时,
令,,所以在单调递增,
故,即.
,
令,,
当,在单调递减;,在单调递增,故,即.当且仅当时取等号
又,
由、可知
所以当时,
②当时,即证.令,,在上单调递减,在上单调递增,,故
③当时,当时,,由②知,而,
故;
当时,,由②知,故;
所以,当时,.
综上①②③可知,当时,.
练习册系列答案
相关题目
【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生,新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女生 | 40 | 40 |
(1)通过估算,试判断男、女哪种性别的学生愿意投入到新生接待工作的概率更大.
(2)能否有99%的把握认为,愿意参加新生接待工作与性别有关?
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |