题目内容
【题目】设点为抛物线上的动点,是抛物线的焦点,当时,.
(1)求抛物线的方程;
(2)过点作圆:的切线,,分别交抛物线于点.当时,求面积的最小值.
【答案】(1)(2)最小值.
【解析】
(1)利用抛物线的焦半径公式求得值,进而得到抛物线方程;
(2)设过点的切线为,利用圆心到直线的距离等于半径得到,化简并借助韦达定理,可得,,设,则直线,与抛物线联立,再由根与系数的关系可得,同理,再设直线,利用弦长公式求弦长,由点到直线距离公式求到直线的距离,代入三角形面积公式,换元后利用基本不等式和二次函数求最小值.
(1)当时,,
所以,故所求抛物线方程为.
(2)点为抛物线上的动点,则,
设过点的切线为,
则,
得,
是方程(*)式的两个根,
所以,,
设,
因直线,与抛物线交于点A,
则得,
所以,即,
同理,
设直线,
则,
,
又,
,
所以
令,,
当且仅当,即时,取得最小值.
【题目】今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员人,其中岁及以上的共有人.这人中确诊的有名,其中岁以下的人占.
确诊患新冠肺炎 | 未确诊患新冠肺炎 | 合计 | |
50岁及以上 | 40 | ||
50岁以下 | |||
合计 | 10 | 100 |
(1)试估计岁及以上的返乡人员感染新型冠状病毒引起的肺炎的概率;
(2)请将下面的列联表补充完整,并判断是否有%的把握认为是否确诊患新冠肺炎与年龄有关;
参考表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
【题目】中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷(guǐ)影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.下表为《周髀算经》对二十四节气晷影长的记录,其中寸表示115寸分(1寸=10分).
节气 | 冬至 | 小寒 (大雪) | 大寒 (小雪) | 立春 (立冬) | 雨水 (霜降) | 惊蛰 (寒露) | 春分 (秋分) | 清明 (白露) | 谷雨 (处暑) | 立夏 (立秋) | 小满 (大暑) | 芒种 (小暑) | 夏至 |
晷影长 (寸 | 135 | 75.5 | 16.0 |
已知《易经》中记录某年的冬至晷影长为130.0寸,夏至晷影长为14.8寸,按照上述规律那么《易经》中所记录的春分的晷影长应为( )
A.91.6寸B.82.0寸C.81.4寸D.72.4寸
【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).
文学类专栏 | 科普类专栏 | 其他类专栏 | |
文学类图书 | 100 | 40 | 10 |
科普类图书 | 30 | 200 | 30 |
其他图书 | 20 | 10 | 60 |
(1)根据统计数据估计文学类图书分类正确的概率;
(2)根据统计数据估计图书分类错误的概率.