题目内容

在三棱锥A-BCD中,AB,AC,AD两两互相垂直,AB=AC=AD=4.点P,Q分别在侧面ABC,棱AD上运动.PQ=2,M为线段PQ的中点,当P,Q运动时,点M的轨迹把三棱锥A-BCD分成两部分的体积之比等于(  )
A.1:63B.1:(16
2
-1
C.π:(64-π)D.π:(14-π)
∵AD⊥AB,AD⊥AC,AB∩AC=A,∴AD⊥平面ABC,AP?平面ABC,
∴△PAQ为直角三角形,M为斜边PQ的中点,∴AM=
1
2
PQ=1,
∴M的轨迹是以A为球心,1为半径的八分之一球面,
V1=
1
8
×
4
3
π×13=
π
6
,V2=
1
3
×
1
2
×4×4×4-
π
6
=
64-π
6

V1
V2
=
π
64-π

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网