ÌâÄ¿ÄÚÈÝ
10£®Ä³Ð£Êýѧ¿ÎÍâС×éÔÚ×ø±êÖ½ÉÏ£¬ÎªÑ§Ð£µÄÒ»¿é¿ÕµØÉè¼ÆÖ²Ê÷·½°¸ÈçÏ£ºµÚk¿ÃÊ÷ÖÖÖ²ÔÚµãPk£¨xk£¬yk£©´¦£¬ÆäÖÐx1=1£¬y1=1£¬µ±k¡Ý2ʱ£¬$\left\{\begin{array}{l}{x_k}={x_{k-1}}+1-5[{T£¨{\frac{k-1}{5}}£©-T£¨{\frac{k-2}{5}}£©}]\\{y_k}={y_{k-1}}+T£¨{\frac{k-1}{5}}£©-T£¨{\frac{k-2}{5}}£©\end{array}\right.$T£¨a£©±íʾ·Ç¸ºÊµÊýaµÄÕûÊý²¿·Ö£¬ÀýÈçT£¨2.6£©=2£¬T£¨0.2£©=0£®°´´Ë·½°¸£¬µÚ2011¿ÃÊ÷ÖÖÖ²µãµÄ×ø±êӦΪ£¨1£¬403£©£®·ÖÎö ͨ¹ý·ÖÎöÕÒ³ö¹æÂÉ£ºxnµÄÖظ´¹æÂÉÊÇ£ºx5£¨n-1£©+1=1£¬x5n+2=2£¬x5n+3=3£¬x5n+4=4£¬x5n=5£¬n¡ÊN*£»ynµÄÖظ´¹æÂÉÊÇ£ºy5£¨n-1£©+k=n£¬0¡Ük£¼5£»½ø¶ø¿ÉµÃ½áÂÛ£®
½â´ð ½â£ºµ±k=2£¬3£¬4£¬5£¬¡Ê±£¬
$T£¨\frac{k-1}{5}£©$-$T£¨\frac{k-2}{5}£©$×é³ÉµÄÊýÁÐΪ0£¬0£¬0£¬0£¬1£¬0£¬0£¬0£¬0£¬1£¬0£¬0£¬0£¬0£¬1¡£¬
Ò»Ò»´úÈë¼ÆËãµÃÊýÁÐxnΪ1£¬2£¬3£¬4£¬5£¬1£¬2£¬3£¬4£¬5£¬1£¬2£¬3£¬4£¬5£¬¡
¼´xnµÄÖظ´¹æÂÉÊÇ£ºx5£¨n-1£©+1=1£¬x5n+2=2£¬x5n+3=3£¬x5n+4=4£¬x5n=5£¬n¡ÊN*£®
Ò»Ò»´úÈë¼ÆËãµÃÊýÁÐ{yn}Ϊ1£¬1£¬1£¬1£¬1£¬2£¬2£¬2£¬2£¬2£¬3£¬3£¬3£¬3£¬3£¬4£¬4£¬4£¬4£¬4£¬¡
¼´ynµÄÖظ´¹æÂÉÊÇ£ºy5£¨n-1£©+k=n£¬0¡Ük£¼5£®
¡ß2011=5¡Á£¨403-1£©+1£¬
¡àµÚ2011¿ÃÊ÷ÖÖÖ²µãµÄ×ø±êӦΪ£¨1£¬403£©£¬
¹Ê´ð°¸Îª£º£¨1£¬403£©£®
µãÆÀ ±¾Ì⿼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪעÒâ´´ÐÂÌâµÄÁé»îÔËÓã¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®ÊýÁÐ1£¬a£¬a2¡£¨a¡Ù0£¬a¡Ù1£©µÄ¸÷ÏîÖ®ºÍΪ£¨¡¡¡¡£©
A£® | $\frac{{{a^{n+1}}-1}}{a-1}$ | B£® | $\frac{{{a^n}-1}}{a-1}$ | C£® | $\frac{{{a^{n+1}}-a}}{a-1}$ | D£® | $\frac{{{a^n}-a}}{a-1}$ |
7£®ÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£® | 1.72.5£¼1.73 | B£® | log0.31.8£¼log0.31.7 | ||
C£® | $\frac{3}{2}$£¼log23 | D£® | $\frac{3}{2}$£¾log23 |