题目内容
【题目】已知数列的前n项和为,且满足,数列中,,对任意正整数,.
(1)求数列的通项公式;
(2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比q的值,若不存在,请说明理由;
(3)求数列前n项和.
【答案】(1)
(2)存在,,
(3)()
【解析】
(1)根据与的关系即可求出;
(2)假设存在实数,利用等比数列的定义列式,与题目条件,比较对应项系数即可求出,即说明存在这样的实数;
(3)由(2)可以求出,所以根据分组求和法和分类讨论法即可求出.
(1)因为,
当时,;
当时,.
故;
(2)假设存在实数,使得数列是等比数列,数列中,,
对任意正整数,.可得,且,
由假设可得,即,
则,可得,
可得存在实数,使得数列是公比的等比数列;
(3)由(2)可得,则,
则前n项和
当n为偶数时,
当n为奇数时,
则().
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:
(1)根据散点图判断,与,哪一个适宜作为年销售量关于年宣传费的回归方程类型(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的年利润与的关系为,根据(2)的结果回答:当年宣传费时,年销售量及年利润的预报值是多少?
【题目】高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:朋友聚集的地方占、家占、个人空间占.如下表:
在家里最幸福 | 在其它场所幸福 | 合计 | |
中国高中生 | |||
美国高中生 | |||
合计 |
(Ⅰ)请将列联表补充完整;试判断能否有的把握认为“恋家”与否与国别有关;
(Ⅱ)从被调查的不“恋家”的美国学生中,用分层抽样的方法选出4人接受进一步调查,再从4人中随机抽取2人到中国交流学习,求2人中含有在“个人空间”感到幸福的学生的概率.
附:,其中.
0.050 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)
用时分组 | ||||||
频数 | 10 | 20 | 50 | 60 | 40 | 20 |
(1)用样本估计总体,求该市市民每天阅读用时的平均值;
(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.