题目内容
数列
的各项均为正值,
,对任意
,
,
都成立.
求数列
、
的通项公式;
当
且
时,证明对任意
都有
成立.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132445945380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132445961249.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132445976385.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446008595.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446008558.gif)
求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132445945380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446039379.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446054242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446070388.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132445976385.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446117826.gif)
(1)
(2)同解析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446132411.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446148634.gif)
解:由
得,
数列
的各项为正值,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446320519.gif)
∴
∴
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446366462.gif)
∴数列
为等比数列.
∴
,
,即为数列
的通项公式.
(2)设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231324469901499.gif)
∴
(1)
当
时,
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447053647.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447068652.gif)
∴
, 当且仅当
时等号成立.
上述(1)式中,
,
,
全为正,所以
∴
得证.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446008595.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446288732.gif)
数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446304380.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446320519.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446335457.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446351545.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446366462.gif)
∴数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446398425.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446569621.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446132411.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446788379.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446148634.gif)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231324469901499.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231324470061755.gif)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447022445.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447037495.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447053647.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447068652.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447084546.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447115234.gif)
上述(1)式中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132446054242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447256249.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132447552535.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231324475681806.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231324475831490.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目