题目内容
4.过抛物线y2=12x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,那么|AB|=( )A. | 16 | B. | 12 | C. | 10 | D. | 8 |
分析 设过抛物线y2=12x的焦点的直线方程为x=my+3,代入y2=12x,利用韦达定理,求出m,即可求出|AB|.
解答 解:设过抛物线y2=12x的焦点的直线方程为x=my+3,
代入y2=12x,可得y2-12my-36=0,
∴y1+y2=12m,y1y2=-36,
∴x1+x2=12m2+6=6,
∴m=0,
∴x=3,
∴|AB|=2×6=12.
故选:B.
点评 本题考查弦长的计算,考查直线与抛物线的位置关系,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
19.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(Ⅰ)求线性回归方程$\widehat{y}$=bx+a;
(Ⅱ)预计在今后的销售中,销量与单价仍然服从(Ⅰ)中的关系,且该产品的成本是3.5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).
(参考公式与数据:$\sum_{i=1}^{6}$xiyi=4066,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=434.2,$\sum_{i=1}^{6}$xi=51.$\sum_{i=1}^{6}$yi=480.$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.)
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(Ⅱ)预计在今后的销售中,销量与单价仍然服从(Ⅰ)中的关系,且该产品的成本是3.5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本).
(参考公式与数据:$\sum_{i=1}^{6}$xiyi=4066,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=434.2,$\sum_{i=1}^{6}$xi=51.$\sum_{i=1}^{6}$yi=480.$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.)
16.函数f(x)=log${\;}_{\frac{1}{2}}$(x2-4x+3)的递增区间是( )
A. | (-∞,1) | B. | (3,+∞) | C. | (2,+∞) | D. | (-∞,2) |
14.若f(x)=|lgx|,当a<b<c时,f(a)>f(c)>f(b).则下列不等式中正确的为( )
A. | (a-1)(c-1)>0 | B. | ac>1 | C. | ac=1 | D. | ac<1 |