题目内容
6.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$,则目标函数z=x2+y2的最小值为$\frac{9}{2}$.分析 作出不等式组对应的平面区域,利用z的几何意义进行求解即可.
解答 解:作出不等式组对应的平面区域如图;
则z的几何意义是区域内的点到原点的距离的平方,
由图象知,O到直线x+y=3的距离最小,
此时距离d=$\frac{|3|}{\sqrt{2}}$=$\frac{3}{\sqrt{2}}$,
即z=x2+y2的最小值为d2=$\frac{9}{2}$,
故答案为:$\frac{9}{2}$.
点评 本题主要考查线性规划以及点到直线的距离的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
17.原点与极点重合,x轴正半轴与极轴重合,则直角坐标为$(-2,-2\sqrt{3})$的点的极坐标是( )
A. | $(4,\frac{π}{3})$ | B. | (4,$\frac{4π}{3}$) | C. | (-4,-$\frac{2π}{3}$) | D. | $(4,\frac{2π}{3})$ |
18.一个大风车的半径为8m,12min旋转一周,它的最低点P0离地面2m,风车翼片的一个端点P从P0开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是( )
A. | h(t)=-8sin$\frac{π}{6}$t+10 | B. | h(t)=-cos$\frac{π}{6}$t+10 | C. | h(t)=-8sin$\frac{π}{6}$t+8 | D. | h(t)=-8cos$\frac{π}{6}$t+10 |