题目内容

18.一个大风车的半径为8m,12min旋转一周,它的最低点P0离地面2m,风车翼片的一个端点P从P0开始按逆时针方向旋转,则点P离地面距离h(m)与时间f(min)之间的函数关系式是(  )
A.h(t)=-8sin$\frac{π}{6}$t+10B.h(t)=-cos$\frac{π}{6}$t+10C.h(t)=-8sin$\frac{π}{6}$t+8D.h(t)=-8cos$\frac{π}{6}$t+10

分析 由题意可设h(t)=Acosωt+B,根据周期性$\frac{2π}{ω}$=12,与最大值与最小值分别为18,2.即可得出.

解答 解:设h(t)=Acosωt+B,
∵12min旋转一周,
∴$\frac{2π}{ω}$=12,
∴ω=$\frac{π}{6}$.
由于最大值与最小值分别为18,2.
∴$\left\{\begin{array}{l}{-A+B=18}\\{A+B=2}\end{array}\right.$,解得A=-8,B=10.
∴h(t)=-8cos$\frac{π}{6}$t+10.
故选:D.

点评 本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网