ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬Ö±Ïßy=x+1±»ÒÔÍÖÔ²µÄ¶ÌÖáΪֱ¾¶µÄÔ²½ØµÃÏÒ³¤Îª$\sqrt{10}$£¬Å×ÎïÏßDÒÔÔµãΪ¶¥µã£¬ÍÖÔ²µÄÓÒ½¹µãΪ½¹µã£®£¨¢ñ£©ÇóÍÖÔ²CÓëÅ×ÎïÏßDµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªA£¬BÊÇÍÖÔ²CÉÏÁ½¸ö²»Í¬µã£¬ÇÒOA¡ÍOB£¬Åж¨ÔµãOµ½Ö±ÏßABµÄ¾àÀëÊÇ·ñΪ¶¨Öµ£¬ÈôΪ¶¨ÖµÇó³ö¶¨Öµ£¬·ñÔò£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÀûÓÃÀëÐÄÂÊa=2c£¬ÍÖÔ²¶ÌÖáΪֱ¾¶µÄÔ²µÄÔ²Ðĵ½Ö±Ïßy=x+1¾àÀëd=$\frac{1}{{\sqrt{2}}}$£¬Çó½â½âµÃa£¬c£¬Çó³öp£¬
¼´¿ÉµÃµ½ÍÖÔ²CµÄ·½³Ì£¬Å×ÎïÏßD·½³Ì£®
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬µ±Ö±ÏßABÓëxÖᴹֱʱ£¬ÉèAB£ºx=m£¬Ôò$y=¡À\frac{{\sqrt{12-3{m^2}}}}{2}$£¬ÀûÓÃOA¡ÍOB£¬Çó³öm£¬ÍƳöԵ㵽ֱÏßABµÄ¾àÀ룮µ±Ö±ÏßABбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m´úÈë3x2+4y2-12=0£¬ÀûÓÃΤ´ï¶¨ÀíÒÔ¼°Åбðʽ´óÓÚ0£¬ÀûÓÃÏòÁ¿ÊýÁ¿»ýΪ0£¬Çó½â¼´¿É£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÖª$\frac{c}{a}$=$\frac{1}{2}$£¬¼´a=2c£¬ÍÖÔ²¶ÌÖáΪֱ¾¶µÄÔ²µÄÔ²Ðĵ½Ö±Ïßy=x+1¾àÀëd=$\frac{1}{{\sqrt{2}}}$£¬
¡à$\sqrt{10}$=$2\sqrt{{b^2}-\frac{1}{2}}$£¬½âµÃb=$\sqrt{3}$£¬¡àa2=$3+\frac{a^2}{4}$£¬½âµÃa2=4£¬¡àc=1£¬¡à$\frac{p}{2}$=1£¬¡àp=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬Å×ÎïÏßD·½³ÌΪy2=4x£» 5·Ö
£¨¢ò£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬µ±Ö±ÏßABÓëxÖᴹֱʱ£¬ÉèAB£ºx=m£¬Ôò$y=¡À\frac{{\sqrt{12-3{m^2}}}}{2}$£¬
¡ßOA¡ÍOB£¬¡à$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=${m^2}-\frac{{12-3{m^2}}}{4}$=0£¬½âµÃm=$¡À\frac{{2\sqrt{21}}}{7}$£¬
¡àԵ㵽ֱÏßABµÄ¾àÀëΪ$\frac{{2\sqrt{21}}}{7}$£® 7·Ö£®
µ±Ö±ÏßABбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m´úÈë3x2+4y2-12=0ÕûÀíµÃ£¬£¨3+4k2£©x2+8kmx+4m2-12=0£¬
Ôò¡÷=£¨8km£©2-4£¨3+4k2£©£¨4m2-12£©£¾0£¬¼´4k2-m2+3£¾0£¬x1+x2=$-\frac{8km}{{3+4{k^2}}}$£¬x1x2=$\frac{{4{m^2}-12}}{{3+4{k^2}}}$£¬
¡ày1y2=£¨kx1+m£©£¨kx2+m£©=${k^2}{x_1}{x_2}+km£¨{x_1}+{x_2}£©+{m^2}$=$\frac{{3{m^2}-12{k^2}}}{{3+4{k^2}}}$£¬
¡ßOA¡ÍOB£¬¡à$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=$\frac{{4{m^2}-12}}{{3+4{k^2}}}$+$\frac{{3{m^2}-12{k^2}}}{{3+4{k^2}}}$=0£¬¼´7m2=12£¨k2+1£©£¬
ÇÒÂú×ã¡÷£¾0£¬10·Ö
¡àԵ㵽ֱÏßABµÄ¾àÀëΪ$\frac{|m|}{{\sqrt{1+{k^2}}}}$=$\frac{{2\sqrt{21}}}{7}$£¬11·Ö
¹ÊÔµãOµ½Ö±ÏßABµÄ¾àÀëΪ¶¨Öµ£¬¶¨ÖµÎª$\frac{{2\sqrt{21}}}{7}$£® 12·Ö£®
µãÆÀ ±¾Ì⿼²éÏòÁ¿Óë½âÎö¼¸ºÎÏàÁªÏµ£¬Å×ÎïÏßÒÔ¼°ÍÖÔ²·½³ÌµÄ×ÛºÏÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®
A£® | $\frac{1}{2}+\frac{5}{2}i$ | B£® | $\frac{1}{2}-\frac{5}{2}i$ | C£® | $-\frac{1}{2}+\frac{5}{2}i$ | D£® | $-\frac{1}{2}-\frac{5}{2}i$ |