题目内容
【题目】已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,证明:对任意的.
【答案】(1)见解析(2)见解析
【解析】试题分析:(Ⅰ)求出导函数,对参数a进行分类讨论,得出导函数的正负,判断原函数的单调性;(Ⅱ)整理不等式得ex-lnx-2>0,构造函数h(x)=ex-lnx-2,则可知函数h'(x)在(0,+∞)单调递增, 所以方程h'(x)=0在(0,+∞)上存在唯一实根x0,即得出函数的最小值为h(x)min=h(x0)=ex0lnx02=即ex﹣lnx﹣2>0在(0,+∞)上恒成立,即原不等式成立.
试题解析:
解:(Ⅰ)由题意知,函数f(x)的定义域为(0,+∞),
由已知得.
当a≤0时,f'(x)>0,函数f(x)在(0,+∞)上单调递增,
所以函数f(x)的单调递增区间为(0,+∞).
当a>0时,由f'(x)>0,得,由f'(x)<0,得,
所以函数f(x)的单调递增区间为,单调递减区间为.
综上,当a≤0时,函数f(x)的单调递增区间为(0,+∞);
当a>0时,函数f(x)的单调递增区间为,单调递减区间为.
(Ⅱ)证明:当a=1时,不等式f(x)+ex>x2+x+2可变为ex﹣lnx﹣2>0,令h(x)=ex﹣lnx﹣2,则,可知函数h'(x)在(0,+∞)单调递增,
而,
所以方程h'(x)=0在(0,+∞)上存在唯一实根x0,即.
当x∈(0,x0)时,h'(x)<0,函数h(x)单调递减;
当x∈(x0,+∞)时,h'(x)>0,函数h(x)单调递增; 所以.
即ex﹣lnx﹣2>0在(0,+∞)上恒成立,
所以对任意x>0,f(x)+ex>x2+x+2成立.
【题目】已知某书店共有韩寒的图书6种,其中价格为25元的有2种,18元的有3种,16元的有1种.书店若把这6种韩寒的图书打包出售,据统计每套的售价与每天的销售数量如下表所示:
售价x/元 | 105 | 108 | 110 | 112 |
销售数量y/套 | 40 | 30 | 25 | 15 |
(1)根据上表,利用最小二乘法得到回归直线方程,求;
(2)若售价为100元,则每天销售的套数约为多少(结果保留到整数)?
【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 105 |
已知在全部105人中随机抽取一人为优秀的概率为.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10或11号的概率.
参考公式和数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
【题目】为了解篮球爱好者小张的投篮命中率与打篮球时间之间的关系,下表记录了小张某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系:
时间 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小张这天的平均投篮命中率;
(2)利用所给数据求小张每天打篮球时间(单位:小时)与当天投篮命中率之间的线性回归方程;(参考公式:)
(3)用线性回归分析的方法,预测小李该月号打小时篮球的投篮命中率.