题目内容
【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 105 |
已知在全部105人中随机抽取一人为优秀的概率为.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到10或11号的概率.
参考公式和数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
【答案】(1)
优秀 | 非优秀 | 总计 | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
合计 | 30 | 75 | 105 |
(2)有97.5%的把握认为成绩与班级有关系(3)
【解析】
试题分析:(1)列联表为
优秀 | 非优秀 | 总计 | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
合计 | 30 | 75 | 105 |
4分
(2)根据列联表的数据,得到,
因此有97.5%的把握认为成绩与班级有关系. 8分
(3)设“抽到10或11号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为
(x,y),所有基本事件有(1,1)、(1,2)、(1,3)、…(6,6),共36个.
事件A包含的基本事件有(4,6)、(5,5)、(6,4)、(5,6)、(6,5)共5个,
. 12分
【题目】根据如下所示的列联表得到如下四个判断:①在犯错误的概率不超过0.001的前提下认为患肝病与嗜酒有关;②在犯错误的概率不超过0.01的前提下认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为0.001%;④没有证据显示患肝病与嗜酒有关.
分类 | 嗜酒 | 不嗜酒 | 总计 |
患肝病 | 7 775 | 42 | 7 817 |
未患肝病 | 2 099 | 49 | 2 148 |
总计 | 9 874 | 91 | 9 965 |
其中正确命题的个数为( )
A. 1 B. 2 C. 3 D. 4