题目内容
【题目】若函数f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是( )
A.
B.
C.
D.
【答案】C
【解析】解:∵函数f(x)=kax﹣a﹣x , (a>0,a≠1)在(﹣∞,+∞)上是奇函数
则f(﹣x)+f(x)=0
即(k﹣1)(ax﹣a﹣x)=0
则k=1
又∵函数f(x)=kax﹣a﹣x , (a>0,a≠1)在(﹣∞,+∞)上是增函数
则a>1
则g(x)=loga(x+k)=loga(x+1)
函数图象必过原点,且为增函数
故选C
由函数f(x)=kax﹣a﹣x , (a>0,a≠1)在(﹣∞,+∞)上既是奇函数,又是增函数,则由复合函数的性质,我们可得k=1,a>1,由此不难判断函数的图象.
练习册系列答案
相关题目
【题目】根据如下所示的列联表得到如下四个判断:①在犯错误的概率不超过0.001的前提下认为患肝病与嗜酒有关;②在犯错误的概率不超过0.01的前提下认为患肝病与嗜酒有关;③认为患肝病与嗜酒有关的出错的可能为0.001%;④没有证据显示患肝病与嗜酒有关.
分类 | 嗜酒 | 不嗜酒 | 总计 |
患肝病 | 7 775 | 42 | 7 817 |
未患肝病 | 2 099 | 49 | 2 148 |
总计 | 9 874 | 91 | 9 965 |
其中正确命题的个数为( )
A. 1 B. 2 C. 3 D. 4