题目内容
【题目】已知实数满足,且.证明:存在整数,使得.
【答案】证明见解析
【解析】
记.
构造下列51个数:,
,
.
下面证明中至少有一个在区间内.
由上述符号的含义,
知,
且.
所以.
(1)若,则由,得.
因此.
(2)若,假设都不在区间内,
则由,知.
结合假设,得.
又由,知.
所以中存在比小的数,也存在比大的数.
又,且都不在区间内.
因此,存在j∈{1,2,……,50},使得.
此时,.
另一方面,,两者矛盾.
所以中至少有一个在区间内.
由(1)(2)知,中至少有一个在区间内.
由的定义知,结论成立
解法二:首先用数学归纳法证明
对于任意正整数n,若实数满足,
则存在的一个排列,
使得.
证明如下:(1)当n=1时,结论显然成立
(2)假设当n=k时,结论成立,
则当n=k+1时,由归纳假设知,存在的一个排列,
使得.
记,,
则.从而当时:
;
当时:
.
即当n=k+1时,结论也成立.
由(1)(2)知,对于任意正整数n,结论都成立.
回到本题,利用上述结论容易知道存在的一个排列满足,,
且.
又,
所以或.
因此结论成立.
【题目】下列结论中正确的个数是( )
①在中,“”是“”的必要不充分条件;
②若,的最小值为2;
③夹在圆柱的两个平行截面间的几何体是圆柱;
④数列的通项公式为,则数列的前项和.( )
A.0B.1C.2D.3
【题目】为利于分层教学,某学校根据学生的情况分成了,,三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成绩,其统计表如下:
类
第次 | 1 | 2 | 3 | 4 | 5 |
分数(小于等于)150 | 145 | 83 | 95 | 72 | 110 |
,;
类
第次 | 1 | 2 | 3 | 4 | 5 |
分数(小于等于)150 | 85 | 93 | 90 | 76 | 101 |
,;
类
第次 | 1 | 2 | 3 | 4 | 5 |
分数(小于等于)150 | 85 | 92 | 101 | 100 | 112 |
,;
(1)经计算已知,的相关系数分别为,,请计算出学生的的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留三位有效数字,越大认为成绩越稳定);
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归方程为,利用线性回归方程预测该生第九次的成绩.
参考公式:(1)样本的相关系数;
(2)对于一组数据,,…,,其回归方程的斜率和截距的最小二乘估计分别为,.