题目内容

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

【答案】(1); (2)时,L取得最大值为米..

【解析】

(1)解直角三角形求得得EH、FH、EF的解析式,再由 L=EH+FH+EF得到污水净化管道的长度L的函数解析式,并注明θ的范围.

(2)设sinθ+cosθ=t,根据函数 L= 在[]上是单调减函数,可求得L的最大值.

所以当时,即时,L取得最大值为米.

由题意可得,由于

所以

,则,由于

由于上是单调减函数,

时,即时,L取得最大值为米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网