题目内容
已知函数y=4x-3•2x+3,当其值域为[1,7]时,x的取值范围是______.
令t=2x,可得y=4x-3•2x+3=t2-3t+3,(t>0)
∵函数的值域为[1,7],
∴解不等式1≤t2-3t+3≤7,可得
解此不等式组,得0<t≤1或2≤t≤4
∴0<2x≤1或2≤2x≤4,即0<2x≤20或21≤2x≤22
因此,x的取值范围是(-∞,0]∪[1,2]
故答案为:(-∞,0]∪[1,2]
∵函数的值域为[1,7],
∴解不等式1≤t2-3t+3≤7,可得
|
解此不等式组,得0<t≤1或2≤t≤4
∴0<2x≤1或2≤2x≤4,即0<2x≤20或21≤2x≤22
因此,x的取值范围是(-∞,0]∪[1,2]
故答案为:(-∞,0]∪[1,2]
练习册系列答案
相关题目