题目内容

【题目】已知集合A={x|log2 ≤1},B={x|x2﹣2x+1﹣k2≥0}.
(1)求集合A;
(2)若A∩B≠,求实数k的取值范围.

【答案】
(1)解:由A中不等式变形得:log2 ≤1=log22,即0< ≤2,

解得:x>﹣1或x<﹣4且x≤﹣1或x≥2,

∴不等式的解集为x<﹣4或x≥2,

则A={x|x<﹣4或x≥2}


(2)解:依题意A∩B≠,得到x2﹣2x+1﹣k2≥0在x∈(﹣∞,﹣4)∪[2,+∞)上有解,

∴k2≤x2﹣2x+1在x∈(﹣∞,﹣4)∪[2,+∞)上有解,

∴k2≤1,

解得:﹣1≤k≤1


【解析】(1)求出A中不等式的解集确定出A即可;(2)由A与B的交集不为空集,确定出k的范围即可.
【考点精析】利用集合的交集运算和对数函数的单调性与特殊点对题目进行判断即可得到答案,需要熟知交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立;过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网