ÌâÄ¿ÄÚÈÝ
6£®Èçͼ£¬ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬F1¡¢F2ΪÆä×ó¡¢ÓÒ½¹µã£¬¹ýF1µÄÖ±Ïßl½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬¡÷F1AF2µÄÖܳ¤Îª$2£¨\sqrt{2}+1£©$£®£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Çó¡÷AOBÃæ»ýµÄ×î´óÖµ£¨OΪ×ø±êԵ㣩£»
£¨3£©Ö±ÏßmÒ²¹ýF1ÓëÇÒÓëÍÖÔ²½»ÓÚC¡¢DÁ½µã£¬ÇÒl¡Ím£¬ÉèÏ߶ÎAB¡¢CDµÄÖеã·Ö±ðΪM¡¢NÁ½µã£¬ÊÔÎÊ£ºÖ±ÏßMNÊÇ·ñ¹ý¶¨µã£¿ÈôÊÇ£¬Çó³ö¶¨µã×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÉèÍÖÔ²µÄ°ë½¹¾àΪc£¬ÀûÓÃÀëÐÄÂÊÒÔ¼°¡÷F1AF2µÄÖܳ¤£¬½âµÃa£¬c£¬È»ºóÇó½âÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky-1£¬Óë$\frac{x^2}{2}+{y^2}=1$ÁªÁ¢£¬Ïûx£¬ÕûÀíµÃ£º£¨k2+2£©y2-2ky-1=0Çó³öA£¬BµÄ×Ý×ø±ê£¬±íʾ³öÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬Í¨¹ý»ù±¾²»µÈʽÇó³ö×îÖµ£®
£¨3£©¹ý¶¨µã$£¨{-\frac{2}{3}£¬0}£©$¿Éͨ¹ýÌØÊâÇéÐβÂÏ룬ÈôÓж¨µã£¬ÔòÔÚx ÖáÉÏ£®ÔÚk¡Ù0£¬k¡Ù¡À1µÄÇé¿öÏ£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky-1£¬Ö±ÏßmµÄ·½³ÌΪ£º$x=-\frac{1}{k}y-1$£¬Çó³öM×ø±ê£¬¿ÉµÃÖ±ÏßMNµÄ·½³Ì£¬ÀûÓÃÖ±ÏßϵÍƳö½á¹û¼´¿É£®
½â´ð ½â£º£¨1£©ÉèÍÖÔ²µÄ°ë½¹¾àΪc£¬Ôò$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬ÓÉÌâÒâÖª $2£¨{a+c}£©=2£¨{\sqrt{2}+1}£©$£¬
¶þÕßÁªÁ¢½âµÃ$a=\sqrt{2}$£¬c=1£¬Ôòb2=1£¬ËùÒÔÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®¡£®£¨4·Ö£©
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky-1£¬Óë$\frac{x^2}{2}+{y^2}=1$ÁªÁ¢£¬Ïûx£¬ÕûÀíµÃ£º£¨k2+2£©y2-2ky-1=0£¬¡÷=£¨-2k£©2+4£¨k2+2£©=8k2+8£¾0£¬${y_1}=\frac{{2k+\sqrt{8{k^2}+8}}}{{2£¨{{k^2}+1}£©}}$£¬${y_2}=\frac{{2k-\sqrt{8{k^2}+8}}}{{2£¨{{k^2}+1}£©}}$£¬¡£¨6·Ö£©
ËùÒÔ${S_{¡÷AOB}}={S_{¡÷AOF}}+{S_{¡÷BOF}}=\frac{1}{2}|{O{F_1}}||{{y_1}-{y_2}}|$=$\frac{1}{2}|{{y_1}-{y_2}}|$=$\frac{1}{2}\frac{{\sqrt{8{k^2}+8}}}{{{k^2}+2}}$=$\sqrt{2}\frac{{\sqrt{{k^2}+1}}}{{{k^2}+2}}$£¬¡£¨7·Ö£©=$\sqrt{2}\sqrt{\frac{{{k^2}+1}}{{{{£¨{{k^2}+2}£©}^2}}}}$=$\sqrt{2}\sqrt{\frac{{{k^2}+1}}{{{{[{£¨{{k^2}+1}£©+1}]}^2}}}}$=$\sqrt{2}\sqrt{\frac{{{k^2}+1}}{{{{£¨{{k^2}+1}£©}^2}+2£¨{{k^2}+1}£©+1}}}$=$\sqrt{2}\sqrt{\frac{1}{{£¨{{k^2}+1}£©+\frac{1}{{{k^2}+1}}+2}}}$$¡Ü\sqrt{2}\sqrt{\frac{1}{2+2}}=\frac{{\sqrt{2}}}{2}$£¨µ±ÇÒ½öµ±${k^2}+1=\frac{1}{{{k^2}+1}}$£¬
¼´k=0ʱµÈºÅ³ÉÁ¢£©£¬ËùÒÔ¡÷AOBÃæ»ýµÄ×î´óֵΪ$\frac{{\sqrt{2}}}{2}$¡£®£¨10·Ö£©
£¨3£©¹ý¶¨µã$£¨{-\frac{2}{3}£¬0}£©$¿Éͨ¹ýÌØÊâÇéÐβÂÏ룬ÈôÓж¨µã£¬ÔòÔÚx ÖáÉÏ£®
ÔÚk¡Ù0£¬k¡Ù¡À1µÄÇé¿öÏ£¬ÉèÖ±ÏßlµÄ·½³ÌΪ£ºx=ky-1£¬
Ö±ÏßmµÄ·½³ÌΪ£º$x=-\frac{1}{k}y-1$£¬
ÓÉ£¨2£©µÃ£¬${y_M}=\frac{{{y_1}+{y_2}}}{2}=\frac{k}{{{k^2}+2}}$£¬
¹Ê${x_M}=k\frac{k}{{{k^2}+2}}-1=\frac{-2}{{{k^2}+2}}$£¬¼´$M£¨{\frac{-2}{{{k^2}+2}}£¬\frac{k}{{{k^2}+2}}}£©$£¬
Ôò$N£¨{\frac{{-2{k^2}}}{{2{k^2}+1}}£¬\frac{-k}{{2{k^2}+1}}}£©$¡£®£¨12·Ö£©
¿ÉµÃÖ±ÏßMNµÄ·½³Ì£º$y+\frac{k}{{2{k^2}+1}}=\frac{{\frac{k}{{{k^2}+2}}-\frac{-k}{{2{k^2}+1}}}}{{\frac{-2}{{{k^2}+2}}-\frac{{-2{k^2}}}{{2{k^2}+1}}}}£¨{x+\frac{{2{k^2}}}{{2{k^2}+1}}}£©$£¬
¼´$y+\frac{k}{{2{k^2}+1}}=\frac{3k}{{2£¨{{k^2}-1}£©}}£¨{x+\frac{{2{k^2}}}{{2{k^2}+1}}}£©$£¬Ôò$y=\frac{3k}{{2£¨{{k^2}-1}£©}}£¨{x+\frac{{2{k^2}}}{{2{k^2}+1}}}£©-\frac{k}{{2{k^2}+1}}$$y=\frac{3k}{{2£¨{{k^2}-1}£©}}[{x+\frac{{2{k^2}}}{{2{k^2}+1}}-\frac{k}{{2{k^2}+1}}•\frac{{2£¨{{k^2}-1}£©}}{3k}}]$£¬¼´$y=\frac{3k}{{2£¨{{k^2}-1}£©}}£¨{x+\frac{2}{3}}£©$£¬
¹ÊÖ±ÏßMN¹ý¶¨µã$£¨{-\frac{2}{3}£¬0}£©$£¨»òÁîy=0£¬¼´µÃ$x=-\frac{2}{3}$£©
Ò×ÑéÖ¤µ±k=0£¬k=¡À1ʱ£¬½áÂÛÈÔ³ÉÁ¢£®
×ÛÉÏ£¬Ö±ÏßMN¹ý¶¨µã$£¨{-\frac{2}{3}£¬0}£©$¡£¨14·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵµÄ×ÛºÏÓ¦Óã¬ÍÖÔ²·½³ÌµÄÇ󷨣¬»ù±¾²»µÈʽÔÚ×îÖµÖеÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦ÒÔ¼°¼ÆËãÄÜÁ¦£®
A£® | -2 | B£® | 2 | C£® | 4 | D£® | -4 |
A£® | $\frac{1}{2}$ | B£® | $\frac{{\sqrt{5}}}{5}$ | C£® | $\frac{{\sqrt{2}}}{2}$ | D£® | $\frac{{\sqrt{3}}}{2}$ |
A£® | {x|-2£¼x¡Ü3} | B£® | {x|-2¡Üx¡Ü3} | C£® | {x|x£¼-2»òx£¾3} | D£® | {x|-2£¼x£¼3} |
A£® | º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[-4£¬4£© | |
B£® | º¯Êýf£¨x£©µÄÖµÓòΪ[0£¬5] | |
C£® | ´Ëº¯ÊýÔÚ¶¨ÒåÓòÄڼȲ»ÊÇÔöº¯ÊýÒ²²»ÊǼõº¯Êý | |
D£® | ¶ÔÓÚÈÎÒâµÄy¡Ê[0£¬+¡Þ£©£¬¶¼ÓÐΨһµÄ×Ô±äÁ¿xÓëÖ®¶ÔÓ¦ |
A£® | ÓÉÑù±¾Êý¾ÝµÃµ½µÄ»Ø¹é·½³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$±Ø¹ýÑù±¾ÖÐÐÄ£¨$\overline{x}$£¬$\overline{y}$£© | |
B£® | ²Ð²îƽ·½ºÍԽСµÄÄ£ÐÍ£¬ÄâºÏµÄЧ¹ûÔ½ºÃ | |
C£® | ÓÃÏà¹ØÖ¸ÊýR2À´¿Ì»»Ø¹éЧ¹û£¬R2ԽС£¬ËµÃ÷Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ | |
D£® | Á½¸öËæ»ú±äÁ¿µÄÏßÐÔÏà¹ØÐÔԽǿ£¬Ïà¹ØϵÊýµÄ¾ø¶ÔÖµÔ½½Ó½üÓÚ1 |