题目内容
4.5个人排成一排,在下列情况下,各有多少种不同排法?(1)甲不在排头,也不在排尾,
(2)甲、乙、丙三人必须在一起,
(3)甲、乙、丙三人两两不相邻,
(4)甲、乙、丙三人按从高到矮,自左向右的顺序.
分析 (1)甲不在排头,也不在排尾,先选2人排在排头和排尾,其他人任意排,问题得以解决;
(2)甲、乙、丙三人必须在一起,先把甲乙丙三人捆绑在一起,再和另外2人全排,问题得以解决;,
(3)甲、乙、丙三人两两不相邻,先排除甲乙丙之外的2人,形成了3个空,把甲乙丙插入,问题得以解决;,
(4)没有限制条件的排列为A55=120种,其中甲乙丙的顺序有A33=6种,问题得以解决;
解答 解:(1)甲不在排头,也不在排尾,先选2人排在排头和排尾,其他人任意排,故有A42A33=72种,
(2)甲、乙、丙三人必须在一起,先把甲乙丙三人捆绑在一起,再和另外2人全排,故有A33A33=36种,
(3)甲、乙、丙三人两两不相邻,先排除甲乙丙之外的2人,形成了3个空,把甲乙丙插入,故有A22A33=12种,
(4)没有限制条件的排列为A55=120种,其中甲乙丙的顺序有A33=6种,故甲、乙、丙三人按从高到矮,自左向右的顺序有$\frac{120}{6}$=20种.
点评 本题考查排列、组合的应用,注意特殊问题的处理方法,如相邻用捆绑法,不能相邻用插空法,属于中档题.
练习册系列答案
相关题目
14.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$=$\overrightarrow{CA}$•$\overrightarrow{AB}$,则该三角形是( )
A. | 等腰三角形 | B. | 直角三角形 | C. | 等腰直角三角形 | D. | 等边三角形 |
12.函数f(x)=4x-3•2x+3的值域为[1,7],则f(x)的定义域为( )
A. | (-1,1)∪[2,4] | B. | (0,1)∪[2,4] | C. | [2,4] | D. | (-∞,0]∪[1,2] |
9.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,1),则$\overrightarrow{a}$+2$\overrightarrow{b}$=( )
A. | (0,5) | B. | (5,-1) | C. | (-1,3) | D. | (-3,4) |