题目内容
【题目】已知函数f(x)=(ax﹣1)(x+b),如果不等式f(x)>0的解集是(﹣1,3),则不等式f(﹣x)<0的解集是( )
A.(﹣∞,﹣1)∪(3,+∞)
B.(﹣3,1)
C.(﹣∞,﹣3)∪(1,+∞)
D.(﹣1,3)
【答案】C
【解析】解;由题意,不等式f(x)>0的解集是(﹣1,3), 所以f(x)<0的解是:x>3或x<﹣1,
于是由f(﹣x)<0得:﹣x>3或﹣x<﹣1,
解得x<﹣3或x>1;
所以不等式f(﹣x)<0的解集是
(﹣∞,﹣3)∪(1,+∞).
故选:C.
【考点精析】本题主要考查了解一元二次不等式的相关知识点,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边才能正确解答此题.
练习册系列答案
相关题目
【题目】2016年5月20日,针对部分“二线城市”房价上涨过快,媒体认为国务院常务会议可能再次确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):
月收入(百元) | 赞成人数 |
[15,25) | 8 |
[25,35) | 7 |
[35,45) | 10 |
[45,55) | 6 |
[55,65) | 2 |
[65,75) | 2 |
(Ⅰ)试根据频率分布直方图估计这60人的中位数和平均月收入;
(Ⅱ)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求被选取的2人都不赞成的概率.