ÌâÄ¿ÄÚÈÝ
15£®ÒÑÖª{an}µÄÇ°nÏîºÍΪSn£¬ÇÒSn+$\frac{1}{2}$an=1£¨n¡ÊN+£©£®£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Éèbn=log3£¨1-Sn+1£©£¬n¡ÊN+£¬Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡+$\frac{1}{{b}_{n}{b}_{n+1}}$£¬ÇóʹTn£¾$\frac{100}{201}$³ÉÁ¢µÄ×îСµÄÕýÕûÊýnµÄÖµ£®
·ÖÎö £¨1£©Í¨¹ýSn+$\frac{1}{2}$an=1ÓëSn+1+$\frac{1}{2}$an+1=1×÷²î£¬ÕûÀíµÃan+1=$\frac{1}{3}•$an£¬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ýan=$\frac{2}{{3}^{n}}$¿ÉÖªSn=1-$\frac{1}{{3}^{n}}$£¬½ø¶øbn=-n-1£¬n¡ÊN+£¬ÁÑÏî¿ÉÖª$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$£¬²¢ÏîÏà¼Ó¿ÉÖªTn=$\frac{1}{2}$-$\frac{1}{n+2}$£¬ÎÊÌâת»¯Îª½â²»µÈʽ$\frac{1}{2}$-$\frac{1}{n+2}$£¾$\frac{100}{201}$£¬¼ÆËã¼´µÃ½áÂÛ£®
½â´ð ½â£º£¨1£©¡ßSn+$\frac{1}{2}$an=1£¨n¡ÊN+£©£¬
¡àSn+1+$\frac{1}{2}$an+1=1£¬
Á½Ê½Ïà¼õµÃ£ºan+1+$\frac{1}{2}$£¨an+1-an£©=0£¬
ÕûÀíµÃ£ºan+1=$\frac{1}{3}•$an£¬
ÓÖ¡ßa1+$\frac{1}{2}$a1=1£¬¼´a1=$\frac{2}{3}$£¬
¡àÊýÁÐ{an}ÊÇÒÔ$\frac{2}{3}$ΪÊ×Ïî¡¢$\frac{1}{3}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡àan=$\frac{2}{3}$•$\frac{1}{{3}^{n-1}}$=$\frac{2}{{3}^{n}}$£»
£¨2£©¡ßan=$\frac{2}{{3}^{n}}$£¬
¡àSn=1-$\frac{1}{2}$an=1-$\frac{1}{{3}^{n}}$£¬
¡àbn=log3£¨1-Sn+1£©=$lo{g}_{3}[1-£¨1-\frac{1}{{3}^{n+1}}£©]$=-n-1£¬n¡ÊN+£¬
¡à$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{-£¨n+1£©[-£¨n+2£©]}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$£¬
Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡+$\frac{1}{{b}_{n}{b}_{n+1}}$
=$\frac{1}{2}-\frac{1}{3}$+$\frac{1}{3}-\frac{1}{4}$+¡+$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{1}{2}$-$\frac{1}{n+2}$£¬
¡àTn£¾$\frac{100}{201}$¼´$\frac{1}{2}$-$\frac{1}{n+2}$£¾$\frac{100}{201}$£¬
ÕûÀíµÃ£ºn£¾400£¬
¡à×îСµÄÕýÕûÊýn=401£®
µãÆÀ ±¾ÌâÊÇÒ»µÀ¹ØÓÚÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
82 | 202 | 352 | 321 | 25 | 293 | 293 | 86 | 28 | 206 |
323 | 355 | 357 | 33 | 325 | 113 | 233 | 294 | 50 | 296 |
115 | 236 | 357 | 326 | 52 | 301 | 140 | 328 | 238 | 358 |
58 | 255 | 143 | 360 | 340 | 302 | 370 | 343 | 260 | 303 |
59 | 146 | 60 | 263 | 170 | 305 | 380 | 346 | 61 | 305 |
175 | 348 | 264 | 383 | 62 | 306 | 195 | 350 | 265 | 385 |
A£® | $\frac{¦Ð}{4}$ | B£® | $\frac{¦Ð}{2}$ | C£® | $\frac{3¦Ð}{4}$ | D£® | $\frac{5¦Ð}{4}$ |
£¨1£©ÇóÔ²ÐÄMµ½Ö±ÏßlµÄ¾àÀ룻
£¨2£©ÇóÖ±Ïßl±»Ô²Ëù½ØµÃµÄÏÒ³¤£®
Äê·Ý | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
Äê·Ý´úºÅt | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
È˾ù´¿ÊÕÈëy | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
£¨2£©ÀûÓã¨1£©ÖеĻع鷽³Ì£¬Ô¤²â¸ÃµØÇø2015ÄêÅ©´å¾ÓÃñ¼ÒÍ¥È˾ù´¿ÊÕÈ룮
¸½£º»Ø¹éÖ±Ïßy=bx+aµÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ¹«Ê½·Ö±ðΪ£ºb=$\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}}$£¬a=$\overline{y}$-b$\overline{t}$£®