ÌâÄ¿ÄÚÈÝ

15£®ÒÑÖª{an}µÄÇ°nÏîºÍΪSn£¬ÇÒSn+$\frac{1}{2}$an=1£¨n¡ÊN+£©£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©Éèbn=log3£¨1-Sn+1£©£¬n¡ÊN+£¬Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡­+$\frac{1}{{b}_{n}{b}_{n+1}}$£¬ÇóʹTn£¾$\frac{100}{201}$³ÉÁ¢µÄ×îСµÄÕýÕûÊýnµÄÖµ£®

·ÖÎö £¨1£©Í¨¹ýSn+$\frac{1}{2}$an=1ÓëSn+1+$\frac{1}{2}$an+1=1×÷²î£¬ÕûÀíµÃan+1=$\frac{1}{3}•$an£¬½ø¶ø¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ýan=$\frac{2}{{3}^{n}}$¿ÉÖªSn=1-$\frac{1}{{3}^{n}}$£¬½ø¶øbn=-n-1£¬n¡ÊN+£¬ÁÑÏî¿ÉÖª$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$£¬²¢ÏîÏà¼Ó¿ÉÖªTn=$\frac{1}{2}$-$\frac{1}{n+2}$£¬ÎÊÌâת»¯Îª½â²»µÈʽ$\frac{1}{2}$-$\frac{1}{n+2}$£¾$\frac{100}{201}$£¬¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¡ßSn+$\frac{1}{2}$an=1£¨n¡ÊN+£©£¬
¡àSn+1+$\frac{1}{2}$an+1=1£¬
Á½Ê½Ïà¼õµÃ£ºan+1+$\frac{1}{2}$£¨an+1-an£©=0£¬
ÕûÀíµÃ£ºan+1=$\frac{1}{3}•$an£¬
ÓÖ¡ßa1+$\frac{1}{2}$a1=1£¬¼´a1=$\frac{2}{3}$£¬
¡àÊýÁÐ{an}ÊÇÒÔ$\frac{2}{3}$ΪÊ×Ïî¡¢$\frac{1}{3}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡àan=$\frac{2}{3}$•$\frac{1}{{3}^{n-1}}$=$\frac{2}{{3}^{n}}$£»
£¨2£©¡ßan=$\frac{2}{{3}^{n}}$£¬
¡àSn=1-$\frac{1}{2}$an=1-$\frac{1}{{3}^{n}}$£¬
¡àbn=log3£¨1-Sn+1£©=$lo{g}_{3}[1-£¨1-\frac{1}{{3}^{n+1}}£©]$=-n-1£¬n¡ÊN+£¬
¡à$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{-£¨n+1£©[-£¨n+2£©]}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$£¬
Tn=$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡­+$\frac{1}{{b}_{n}{b}_{n+1}}$
=$\frac{1}{2}-\frac{1}{3}$+$\frac{1}{3}-\frac{1}{4}$+¡­+$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{1}{2}$-$\frac{1}{n+2}$£¬
¡àTn£¾$\frac{100}{201}$¼´$\frac{1}{2}$-$\frac{1}{n+2}$£¾$\frac{100}{201}$£¬
ÕûÀíµÃ£ºn£¾400£¬
¡à×îСµÄÕýÕûÊýn=401£®

µãÆÀ ±¾ÌâÊÇÒ»µÀ¹ØÓÚÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø