题目内容
5.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(2)利用(1)中的回归方程,预测该地区2015年农村居民家庭人均纯收入.
附:回归直线y=bx+a的斜率和截距的最小二乘估计公式分别为:b=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,a=$\overline{y}$-b$\overline{t}$.
分析 (1)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.
(2)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.
解答 解:(1)由所给数据计算得$\overline{t}$=$\frac{1}{7}$(1+2+3+4+5+6+7)=4,$\overline{y}$=$\frac{1}{7}$(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,
$\sum_{i=1}^{7}$(ti-t)2=9+4+1+0+1+4+9=28,
$\sum_{i=1}^{7}$(${t}_{i}-\overline{t}$)(${y}_{i}-\overline{y}$)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,
所以b=$\frac{14}{28}$=0.5,a=4.3-0.5×4=2.3,
所求回归方程为y=0.5t+2.3.
(2)将2015年的年份代号t=9,代入(1)中的回归方程,得y=0.5×9+2.3=6.8,
点评 本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.
练习册系列答案
相关题目
16.若a>b≥2,给定下列不等式①$\frac{1}{a}$<$\frac{1}{b}$;②a+b>2$\sqrt{ab}$;③ab>a+b;④loga3>logb3,其中正确的个数为( )
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
10.已知复数z满足(z-1)i=-1,则z=( )
A. | 1+i | B. | -1+i | C. | i | D. | -i |
17.数列{an}的前n项和Sn=2n(n∈N*),则a12+a22+…+an2等于( )
A. | 4n | B. | $\frac{1}{3}({4^n}-1)$ | C. | $\frac{4}{3}({4^n}-1)$ | D. | $\frac{1}{3}({4^n}+8)$ |
15.椭圆$\frac{x^2}{{\frac{a^2}{2}}}$+$\frac{y^2}{a^2}$=1与连结A(1,2),B(2,3)的线段没有公共点,则正数a的取值范围是( )
A. | (0,$\sqrt{6}$)∪($\sqrt{17}$,∞) | B. | ($\sqrt{17}$,∞) | C. | [$\sqrt{6}$,$\sqrt{17}$] | D. | ($\sqrt{6}$,$\sqrt{17}$) |