题目内容
【题目】若函数在区间上, , , , , , 均可为一个三角形的三边长,则称函数为“三角形函数”.已知函数在区间上是“三角形函数”,则实数的取值范围为( )
A. B.
C. D.
【答案】D
【解析】试题分析:根据“三角形函数”的定义可知,若在区间上的“三角形函数”,则在上的最大值和最小值应满足,由可得,所以在上单调递减,在上单调递增, ,所以,解得的取值范围为,故选A.
【方法点睛】本题主要考查了利用导数研究函数在闭区间上的最值,考查考生应用所学知识解决问题的能力,属于中档题.解答本题首先通过给出的定义把问题转化为函数的最值问题,通过导数研究其单调性,得到最小值,通过比较区间端点的函数值求出最大值,列出关于参数的不等式,进而求得其范围.
练习册系列答案
相关题目