题目内容
【题目】已知数列{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)令cn= an bn,求数列{cn}的前n项和Tn.
【答案】(1)an=3n-1,bn=,(2)Tn= - (6n+7)31-n .
【解析】
试题解析:(Ⅰ)∵anbn+1+bn+1=nbn.
当n=1时,a1b2+b2=b1.∵b1=1,b2=, ∴a1=2,
又∵{an}是公差为3的等差数列, ∴an=3n-1,
∴. 即 .
即数列{bn}是以1为首项,以为公比的等比数列, ∴bn=,
(Ⅱ)cn= an bn=(3n-1)
∴Tn=2×+5×+8×+……+(3n-1) ①
Tn= 2×+5×+8×+……+(3n-1) ②
① - ②:Tn=2 +3×+3×……+3× -(3n-1)
=2 + 3×-(3n-1)
∴Tn= - (6n+7)31-n .
【题目】某中学有一调查小组为了解本校学生假期中白天在家时间的情况,从全校学生中抽取人,统计他们平均每天在家的时间(在家时间在小时以上的就认为具有“宅”属性,否则就认为不具有“宅”属性)
具有“宅”属性 | 不具有“宅”属性 | 总计 | |
男生 | 20 | 50 | 70 |
女生 | 10 | 40 | 50 |
总计 | 30 | 90 | 120 |
(1)请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错误的概率不超过
的前提下认为“是否具有‘宅’属性与性别有关?”
(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个人的样本,其中男生和女生各多少人?
从人中随机选取人做进一步的调查,求选取的人至少有名女生的概率.
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 5.635 | 7.879 | 10.828 |