题目内容

【题目】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x> 时,f(x+ )=f(x﹣ ).则f(6)=(  )
A.﹣2
B.﹣1
C.0
D.2

【答案】D
【解析】解:∵当x> 时,f(x+ )=f(x﹣ ), ∴当x> 时,f(x+1)=f(x),即周期为1.
∴f(6)=f(1),
∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),
∴f(1)=﹣f(﹣1),
∵当x<0时,f(x)=x3﹣1,
∴f(﹣1)=﹣2,
∴f(1)=﹣f(﹣1)=2,
∴f(6)=2.
故选:D.
求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.;本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网