搜索
题目内容
如图,已知球O的面上四点
,DA⊥平面ABC。AB⊥BC,DA=AB=BC=
,则球O的体积等于
。
试题答案
相关练习册答案
本小题主要考查球的内接几何体体积计算问题。其关键是找出球心,从而确定球的半径。由题意,三角形DAC,三角形DBC都是直角三角形,且有公共斜边。所以DC边的中点就是球心(到D、A、C、B四点距离相等),所以球的半径就是线段DC长度的一半。
练习册系列答案
学习指要系列答案
每课一练浙江少年儿童出版社系列答案
双成卷王系列答案
阳光训练课时作业系列答案
新课程新学习系列答案
中考面对面系列答案
云南师大附小小升初完全试卷系列答案
快乐小博士金卷100分系列答案
云南省标准教辅同步指导训练与检测系列答案
口算训练系列答案
相关题目
球的体积是
,则此球的表面积是( )
A.12
π
B.16
π
C.
D.
已知△
ABC
的三个顶点在球面上,且
AB=
1,
AC=
3,
BC
=
,球心
到平面
ABC
的距离为
,则该球的表面积等于
.
如图,半径为2的半球内有一内接正六棱锥
,
则此正六棱锥的侧面积是_
_ _____
_.
正四棱锥(底面正方形,顶点在底面的射影是底面的中心)的底面面积为Q,侧面积为S,则它的体积为( )
A.
1
3
Q
S
B.
1
6
Q(
S
2
-
Q
2
)
C.
1
2
S(
S
2
-
Q
2
)
D.
1
2
Q(
S
2
-
Q
2
)
有棱长为6的正四面体SABC,A′,B′,C′分别在棱SA,SB,SC上,且SA′=2,SB′=3,SC′=4,则截面A′B′C′将此正四面体分成的两部分体积之比为( )
A.
1
9
B.
1
8
C.
1
4
D.
1
3
如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高。若圆锥的轴截面是一个正三角形,则圆柱的侧面积与圆锥的侧面积之比为
已知正方体外接球的体积是
,则正方体的棱长等于
.
若三个球的表面积之比是
,则它们的体积之比是_____________。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总